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Classical Computational Dynamics, 

Constrained Equations of Motion 
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Multibody Dynamics: Is anything 

left to do? 

• Purpose: understand/optimize performance before building prototype 
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14-16 AUG 2012 

Multibody Dynamics: Is anything 

left to do? 
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All the good music has already been written by people with wigs and stuff.  
 

       Frank Zappa 
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Frictional Contact Simulation 
[Commercial Solution] 

• Model Parameters: 
– Spheres: 60 mm diameter and mass 0.882 kg 

– Forces: smoothing with stiffness of 1E5, force 
exponent of 2.2, damping coefficient of 10.0, 
and a penetration depth of 0.1 

– Simulation length: 3 seconds 
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CAE: Looking Ahead… 

• How is the Rover moving along on a slope with granular material? 

• What wheel geometry is more effective? 
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Multibody Dynamics: Lots to be done… 

• Applications transitioning from multi-body to many-body dynamics 

 

• Bodies interacting through friction/contact/impact 

 

• Bodies are compliant, sometimes undergo large deformations 

 

• Bodies might interact with fluid (FSI) 

 

• Tomorrow’s problems are in the realm of multi-phsyics 
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Simulating large engineering problems 
remains a challenge… 
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Lab’s  Research Heterogeneous  

Computing Cluster 
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• More than 25,000 GPU scalar processors  

– Can manage about 75,000 GPU parallel threads at full capacity 

• More than 1000 CPU cores 

• Mellanox Infiniband Interconnect, 40Gb/sec 

• About 0.7 TB of RAM 

• More than 20 Tflops DP 

• … 

14-16 AUG 2012 

The issues is not hardware availability. Rather, it is producing modeling and 
solution techniques that can leverage this hardware 

Lab’s  Research Heterogeneous  

Computing Cluster 

12 UNCLASSIFIED 



Heterogeneous Computing Template (HCT): 
A Research-Grade Software Infrastructure  

for Large Scale Computational Dynamics Simulation 

• Goal, lab’s research effort: shape up the future of physics-based simulation 

– Develop a Heterogeneous Computing Template (HCT) that leverages emerging 

hardware architectures and suitable algorithms to solve open engineering problems 

 

 

• Targeted “emerging hardware architectures” : 

– Clusters of CPUs and GPUs (accelerators) 

• More than 100 CPU cores, tens of GPU cards, tens of thousands of GPU cores 

 

 

• Focus on “open engineering problems” 

– Vehicle mobility, granular dynamics, soil modeling, tire/terrain modeling, FSI, etc. 
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HCT: Five Major Components 

• Computational Dynamics requires 
 

– Advanced modeling techniques 

– Strong algorithmic (applied math) support 

– Proximity computation 

– Domain decomposition & Inter-domain data exchange 

– Post-processing (visualization)  

 

 

 

• HCT represents the library support, the associated API, and the 

embedded tools that support this five component abstraction 
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• Multi-Physics targeted Computational Dynamics requires 
 

– Advanced modeling techniques 

– Strong algorithmic (applied math) support 

– Proximity computation 

– Domain decomposition & Inter-domain data exchange 

– Post-processing (visualization)  
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HCT: Support for Advanced Modeling 

Techniques 

• Modeling: what does it mean? 

– The process of formulating a set of governing differential equations that captures the 

multi-physics associated with the engineering problem of interest 

 

 

 

 

• Modeling decisions  are consequential 

– Good modeling places you at an advantage when it comes to simulating hard problems 
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Multi-Body Dynamics w/ DVI 
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Traditional Discretization Scheme 

positions 
time step index 

speeds Reaction 

impulses Applied Forces 

Coulomb 3D fricion  

model 

Complementarity 

Condition 

Stabilization 

term 

Mass Mat. 

(Stewart, 1998) 
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 Introduce the convex hypercone...  

 

 

 

CCP assumes following form: Find  such that 

The Cone Complementarity 

Problem (CCP) 

... and its polar hypercone: 

 

 

 

 First order optimality conditions lead to Cone Complementarity Problem 
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The Quadratic Programming Angle… 

• The relaxed EOM represent a cone-complementarity problem (CCP) 
 

• The CCP captures the first-order optimality condition for a quadratic 

optimization problem with conic constraints: 

 

 

 

 

 

 

• Notation used: 
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CCP Solution Algorithm 
[mapped on the GPU] 
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Mixing 50,000 M&Ms on the GPU 
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• Multi-Physics targeted Computational Dynamics requires 
 

– Advanced modeling techniques 

– Strong algorithmic (applied math) support 

– Proximity computation 

– Domain decomposition & Inter-domain data exchange 

– Post-processing (visualization)  
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1 Million Rigid Spheres 
[parallel on the GPU] 
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Objective Function Value 
[1K bodies, 3525 contacts] 

Method Iterations 
Final Objective 

Function Value 
γmin γmax 

Computation Time  

[sec] 

GPMINRES-no p 
1000 MinRes Its. [within 

100 changes of active set] 
-2.9035 0.0 7.7487 6.7002 

GPMINRES-no p 

(not plotted above) 

10000 MinRes Its. [within 

1000 changes of active set] 
-2.9045 0.0 8.2002 61.0698 

GPMINRES-p 
100 MinRes Its. [within 100 

changes of active set] 
-2.8854 0.0 6.8551 1675 

Jacobi 1000 -2.5077 0.0 4.4961 3.6643 

The green & blue lines have 

100 dots on them; i.e.,100 

changes of active set 

The red line has 1000 

dots on it; i.e.,1000 

Jacobi sweeps 

14-16 AUG 2012 25 UNCLASSIFIED 



• Multi-Physics targeted Computational Dynamics requires 
 

– Advanced modeling techniques 

– Strong algorithmic (applied math) support 

– Proximity computation 

– Domain decomposition & Inter-domain data exchange 

– Post-processing (visualization)  
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600,000 Bodies Moving & Colliding 
[on the GPU] 
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Example: Ellipsoid-Ellipsoid CD 
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Collision Detection 

• Broad phase 

– Draws on an Axis Aligned Bounding Box (AABB) approach 

 

• Narrow phase 

– Draws on Minkowski Portal Refinement 
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Multiple-GPU Collision Detection 

Processor: AMD Phenom II X4 940 Black 

 

Memory: 16GB DDR2 

 

Graphics: 4x NVIDIA Tesla C1060 

 

Power supply 1: 1000W 

 

Power supply 2: 750W 

Assembled Quad GPU Machine 
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Software/Hardware Setup 

Thread 
0 

Thread 
1 

Thread 
3 

Thread 
2 

GPU 
0 

GPU 
1 

GPU 
3 

GPU 
2 

Open MP Quad Core AMD 
Microprocessor  

Tesla C1060 
4x4 GB Memory 
4x30720 threads 

Main Data Set 

Results 
16 GB RAM 

CUDA 
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Spheres – Contacts vs. Time 
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Speedup - GPU vs. CPU (Bullet library) 
[results reported are for spheres] 
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Contacts (Millions) 

GPU: NVIDIA Tesla C1060 
CPU: AMD Phenom II Black X4 940 (3.0 GHz) 
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• Multi-Physics targeted Computational Dynamics requires 
 

– Advanced modeling techniques 

– Strong algorithmic (applied math) support 

– Proximity computation 

– Domain decomposition & Inter-domain data exchange 

– Post-processing (visualization)  
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𝜔 = 𝜋 
rad

sec
 

 

𝐴𝑛𝑐ℎ𝑜𝑟 𝑤𝑖𝑑𝑡ℎ = 5 [𝑐𝑚] 

ℎ = .0001 [𝑠] 

𝑔 = −9.80665 
𝑚

𝑠2  

20𝑘 𝑠𝑝ℎ𝑒𝑟𝑒𝑠 

𝑟 = 3.5 𝑚𝑚 

𝜇 = .46 
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200,000 Bodies & 10 kg Anchor 
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Anchor Penetration Depth, 

Function of Applied Torque 
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Depth as a Function of Pulling 

Force 
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Depth as a Function of Pulling 

Force 
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Track Simulation 

Parameters: 
• Driving speed: 1.0 rad/sec 

• Length: 12 seconds 

• Time step: 0.005 sec 

• Computation time: 18.5 hours 

• Particle radius: .027273 m 

• Terrain: 284,715 particles 

•Inertia parameters of track are 

fake 
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Dual Track ‘Footprint’ 
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In theory, there is no difference between theory and practice. In practice, there is. 

        Yogi Bera 
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M113 Tank Simulation 
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Real Masses for Both Obstacles 

and Terrain… 
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Vehicle-Track-Terrain Interaction 
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Vehicle-Track-Terrain Interaction 
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Vehicle-Track-Terrain Interaction 
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Conclusions/Putting Things in 

Perspective 

• Goal: investigate how computing can catalyze over the next 10 years 

 advances in Science and innovation in Engineering 

 

 

• Reaching the goal… 

– Develop an experimentally validated Heterogeneous Computing Template (HCT) 

– Use HCT to advance state of the art in physics-based simulation 
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Thank You. 

negrut@wisc.edu 

http://sbel.wisc.edu  
University of Wisconsin-Madison 

Simulation-Based Engineering Lab 

Wisconsin Applied Computing Center 

 

More Animations at: 

http://sbel.wisc.edu/Animations/ 
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